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bstract

The role of sensitivity analysis during kinetic parameter estimation is discussed in this work. An approach consisting in various steps: initialization

f parameter values, nonlinear parameter estimation, and parameter sensitivity analysis, is proposed to assure that kinetic parameters are properly
stimated and the convergence of the objective function to the global minimum is achieved. The method is illustrated with experimental data
eported in the literature for the hydrodesulfurization of benzothiophene. The values of kinetic parameters obtained with the proposed methodology
ave slightly lower values of the sum of square errors between experimental and predicted reaction rates compared with reported ones.

2006 Elsevier B.V. All rights reserved.
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. Introduction

Most of the mathematical models used for representing any
ype of phenomena (or situation) occurring not only during
hemical reactions but also in other areas, e.g., thermodynam-
cs, environmental sciences, molecular modeling, etc. involve
arameters that need to be estimated from experimental data.
he models can be supported on theoretical, semitheoreti-
al/semiempirical or empirical bases, and their parameters can
ave theoretical meaning or be simply correlation constants [1].
inear regression is the most-widely used method for parame-

er estimation due to its simplicity and easy manner to interpret
he results, i.e., by representing the data in 2-dimension plots
nd examining how the experimental points deviate from the
traight line. The common way that researchers often express
he strength of the relationship between two variables is by the
orrelation coefficient (r) or determination coefficient (correla-
ion coefficient squared, r2), concepts from statistics, which are

sed to see how well trends in the predicted values follow trends
n experimental values, and range between 0 and 1. If there is no
elationship between the predicted values and the experimental
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nes r = 0, r2 = 0 or are very low. As the strength of the rela-
ionship between the predicted values and experimental values
ncreases, so does the correlation coefficient. A perfect fit gives
coefficient of 1. Thus, the higher the correlation and determi-
ation coefficients the better the fit [2].

Sometimes, a model can be transformed into different lin-
ar equations, such as in the case of Michaellis–Menten (M–M)
odel used in enzymatic kinetics, as can be seen in Table 1

3–6]. It has been reported that the values of parameters of the
–M model calculated with the linear equations given in Table 1

an be slightly different, and it is recommended and more accu-
ate to use that model which when representing the data in a
-dimension plot gives better distribution of the experimental
oints along the straight line [7]. This has been confirmed by
onlinear regression analysis [8].

Another example of difficulties when using linear regres-
ion analysis to estimate kinetic parameters has been reported
ecently. For studying kinetics of hydrocracking of heavy oils
n perfectly mixed continuously reaction system, some authors
ransform the resulting reaction rate equations in various straight
ines as is presented in Table 2, and then they calculate sepa-
ately the values of each parameter, k0, k1 and k2 [9]. By this

ay, the condition k0 = k1 + k2 is not satisfied, while when deter-
ining these kinetic parameters simultaneously by nonlinear

egression this situation is not presented. The error between
xperimental and calculated yields has been shown to be lower

mailto:jancheyt@imp.mx
dx.doi.org/10.1016/j.cej.2006.10.012
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Table 1
Example of different linear equations obtained from a same model

Method Equation

Michaellis–Menten Model [5,7] v = Vmax[S]

Km + [S]

Lineweaver and Burk [3]
1

v
= 1

Vmax
+ Km

Vmax

1

[S]

Eadie–Hofstee [4]
v

[S]
= Vmax

Km
−

(
1

Km

)
v

Augustinsson [5] v = Vmax − Km
v

[S]

Woolf [6]
[S]

v
= Km

Vmax
+ 1

Vmax
[S]

Nonlinear regression [1] SCE =
∑

|(vc − ve)|2 =
N∑

i=1

∣∣∣ VmaxC
e
s

Km + Ce
s

− ve

∣∣∣

Table 2
Example of parameter estimation with linear and nonlinear regression analyses

Kinetic model [9] Feed (A)
k1−→Light oils (B)

Feed (A)
k2−→Gases (C)

(rA) = −(k1 + k2)CA = −k0CA

(rB) = k1CA

(rC) = k2CA

Linear regression analysis (k0, k1 and k2 are determined independently)
(

CA0 − CA

CA

)
= k0

(
1

WHSV

)
(

CA0 − CA

CA

)(
CB − CB0

CA

)
= k1

(
1

WHSV

)
[

(CA0 − CA)CC

CA0CA

]
= k2

(
1

WHSV

)

Nonlinear regression analysis (k0, k1 and k2 are determined simultaneously) SSE =
3∑

(Ccalc
i − C

exp
i )

2
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ith parameter values determined with the latter approach
10].

As can be observed from the examples described above lin-
ar regression analysis can sometimes present problems when
stimating parameters for a given model. That is why nonlin-
ar regression is a more common approach when modeling of
eterogeneous kinetic systems, in which the main objective is
o optimize the values of the model parameters that provide
he best fit to the experimental data. This nonlinear parame-
er estimation is carried out by using the least squares method,
earching the best set of parameters that minimizes the sum of
quares errors (SSE) between measured and calculated values
1,2].

When using nonlinear regression for parameter estimation,
he task turns into a nonlinear optimization problem, which can
e solved by optimization methods [11], such as Gauss–Newton,

evenberg–Marquardt among others. Levenberg–Marquardt
ethod is of course the most popular alternative to the
auss–Newton method of finding the minimum of a function

hat is a sum of squares of nonlinear functions. Some models,

w
g
a
[

i=1

Ccalc
i evaluated with the above equations

uch as those used for describing heterogeneous kinetics, can
ave several parameters (sometimes hundreds) to be estimated,
nd be highly nonlinear; in those cases when determining the
alues of parameters, multiple solutions of the objective func-
ion during the optimization process (i.e. multiple minima) can
e obtained and the best set of parameters is not guaranteed. The
ptimal solution depends mostly on the initial guess of param-
ters [12,13].

Most of the kinetics studies reported in the literature only give
arameter values and r, r2, residuals (differences between exper-
mental and calculated values), absolute errors, or SSE, without
nough evidence to assure that parameter values correspond to
he global minima of the objective function, and consequently
he model accuracy is not clearly established. The sensitivity
nalysis is a tool that allows for validating the values of param-
ters obtained by regression analysis. Sensitivity analysis is a

ay to assure that the solution of the objective function with a
iven set of parameters does correspond to the global minimum
nd not to local minima in the parameter optimization process
12]. It must be clarified that what is global is the minimum and
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ot the sensitivity analysis, which is local. Although global con-
ergence (i.e. global minimum) cannot be totally proved by a
ocal sensitivity analysis, it is very helpful to obtain information
bout the surface of the model nearby the determined minimum,
hich most of the times coincide with global minima. Together
ith sensitivity analysis, previous experience with the particular

ase (e.g. knowledge about order of magnitude of the estimated
arameters) also helps in establishing the accuracy of the esti-
ated parameters.
Taking into consideration that sensitivity analysis in the fit-

ing of kinetic data is a very important and until recently com-
letely neglected topic, this paper proposes an approach based
n sensitivity analysis to determine the best set of parameter
alues during parameters optimization process. The procedure
s exemplified with parameter estimation of a heterogeneous
inetic model and experimental data of hydrodesulfurization
f benzothiophene reported in the literature. This example was
hosen due to the abundant experimental data reported by the
uthors, which by the way is not common to find in the open
iterature [14].

. Description of the method

A direct and universal approach that can be a guarantee of
he best solution during parameter estimation process is not easy
o develop. The main difficulties when estimating parameters in
eterogeneous kinetics are: the complexity of the model, which
an be from simple algebraic equations to complex differential

quation systems, linear or highly nonlinear in nature; the source
nd precision of experimental data, which can come from the
iterature (from one or more references) or from own or litera-
ure experiments specially designed to perform kinetic studies

t
n
t
s

Fig. 1. Proposed methodology
ineering Journal 128 (2007) 85–93 87

n which all the care has been put to assure kinetic regime; the
obustness of the optimization algorithm, in most of the cases
evenberg–Marquardt method is used since it has shown to be
uperior over others [15]; the numerical method employed for
olving the model equations, for instance, orthogonal colloca-
ion has been reported to fail for dynamic simulation of plug
ow packed bed reactors and the method of characteristics has
een preferred [16].

Therefore, what is presented here is not such a magic method
ut an approach that takes into consideration various steps, e.g.,
nitialization of parameter values, nonlinear parameter estima-
ion, and parameter sensitivity analysis, to determine and vali-
ate the set of parameters that minimizes the differences between
xperimental and calculated experimental values. A schematic
epresentation of the proposed methodology is shown in Fig. 1.

.1. Initialization of parameters

The optimal solution during nonlinear parameter estimation
epends mostly on the initial guess of parameters values [12].
he initialization of parameters is a problem frequently found

n nonlinear estimation that may converge to local minima and
ot to the global minimum during the parameter optimization
rocess.

If the kinetic model and the corresponding parameters have
een reported previously by other authors, no matter the dif-
erences in reaction conditions, catalyst, feed, reaction system,
tc., at least the order of magnitude of the reported parame-

ers values should be employed as initial guess. If there are
ot reported values, an iterative analysis of orders of magni-
ude of the parameters should be performed. This approach can
ometimes be very tedious, since it implies the evaluation of the

for parameter estimation.
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bjective function for different sets of parameters, starting say
ith ki = 1 (where k is the parameter to be estimated, and i = 1,
parameters). Then, the value of each parameter is changed

ne at a time, say kj = 10, keeping constant the values of the
thers (ki = 1, for i �= j), and the objective function is evaluated
gain. For any modification in the value of ki the change in the
bjective function is examined and the influence of each param-
ter on the objective function (sensitivity of each parameter) is
etermined.

This procedure is repeated for different values of ki < 1 (0.1,
.01, 0.001, etc.) and/or ki > 1 (10, 100, 1000, etc.) as many
imes as necessary. The lower the value of the objective function
ndicates the correct order of magnitude of the parameter value.
his means that if one parameter is changed, for instance, from
to 10, and the value of the objective function increases, it is
ore likely that this parameter value is <1.
This approach allows for determining the order of magnitude

f the parameter values and becomes easier the estimation of
nitial values. Of course, it requires patience and certain expertise
n its use.

Initial guess of parameter values can also be obtained
sing Monte Carlo method [17], which consists mainly in
he following steps: (1) initial guess of parameters is deter-

ined using random numbers, (2) with this initial guess of
arameters the objective function (e.g. sum of square errors)
s calculated, and (3) this procedure is repeated M times
M > 1000) and the minimum of the M values of the sum of
quares of residuals is determined. The set of initial guess
f parameters that corresponds to this minimum can be used
s initial estimates in the nonlinear parameter optimization
rocess.

.2. Nonlinear parameter estimation

The reliable solution of nonlinear parameter estimation is an
mportant computational problem when modeling of heteroge-
eous kinetic systems [15]. This nonlinear parameter estimation
s commonly carried out by using the least squares method in
rder to find the global minimum of the following objective
unction:

SE =
N data∑
i=1

(yexp − ycalc)2 (1)

he method of Marquardt [11] (also called Levenberg–
arquardt) uses the method of linear descent in early iterations

nd then gradually switches to the Gauss–Newton approach.
ost of the scientific software (the so-called “solvers”) uses

he Marquardt method for performing nonlinear regression
nalysis.

Most often nonlinear regression is done without weighting,
iving equal weight to all points (as in Eq. (1)), as is appropriate

hen experimental scatter is expected to be the same in all parts
f the curve. If experimental scatter is expected to vary along the
urve, then the points can be weighted differentially. The most-
ften used weighting method is called “weighting by 1/y2” and
s expressed as follows [18]:

c
a
I
t

ineering Journal 128 (2007) 85–93

SE =
N data∑
i=1

1

y2
exp

(yexp − ycalc)2 (2)

ometimes, the data come with additional information about
hich points are more reliable. For example, different data may

orrespond to averages of different numbers of experimental
rials, in this case weighting of the data should be added in the
bjective function to obtain better estimates

SE =
N data∑
i=1

wi(yexp − ycalc)2 (3)

here wi is a weighting factor.

.3. Sensitivity analysis

Sensitivity analysis is commonly employed to assess that in
he nonlinear parameter estimation, the set of parameters does
orrespond to the global minimum and not to local minima [12].
ensitivity analysis is applied to each of the estimated parame-

ers by means of perturbations of the parameter value (keeping
he other parameters in their estimated values). Perturbations
re preferably done in the range of ±20%. For each perturba-
ion in the parameter values the objective function is reevaluated
nd then for each parameter the perturbation percentage is plot-
ed against the corresponding value of the objective function.
f all perturbations in all the parameters give the minimum
f the objective function with their original values (0% per-
urbation), then the global minimum has been achieved. On
he contrary, if at least one parameter does not give the same

inimum than the others at 0% perturbation, that means poor
onlinear parameter estimation. To correct this, the values of
he wrong estimated parameters are re-determined by examining
he sensitivity plot, and finally, parameter sensitivity is carried
ut again on these parameters and now the global minimum is
uaranteed.

.4. Residual analysis

Analysis of residual distribution, calculated as the difference
etween experimental and predicted values, is frequently prac-
iced by some authors as a way to demonstrate that the estimated
arameters for a given model accurately predict the experimental
alues. Plots of the residuals are used to check the quality of the
t. Graphical analysis of the residuals is the single most impor-

ant technique for determining the need for model parameters
efinement [19]. A plot of residual values against the number
f experimental observations is commonly used, and a regu-
ar distribution of residuals with no prediction bias should be
bserved, thus proving the adequacy of the proposed model and
he calculated parameters. On the contrary, if there is a pattern,
he parameters are wrong estimated.

Residual analysis is certainly useful to see graphically the pre-

ision of estimations. However, it cannot guarantee by itself the
chievement of the global minimum of the objective function.
t is better to use both residual analysis and sensitivity analysis
o assure that parameters are properly estimated.
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rates directly. Catalyst deactivation was negligible over hun-
dreds of hours of operation. A summary of experimental results
is shown in Table 3.

Table 3
Summary of results of benzothiophene HDS kinetics [14]

T (◦C) PBT (atm) PH2 (atm) PH2S (atm) PHe (atm) rBT (×107

gmol/gcat s)

252.5 0.105 0.215 0.022 0.819 0.272
252.5 0.068 0.234 0.026 1.04 0.309
252.5 0.197 0.842 0.020 – 1.04
252.5 0.063 1.14 0.124 – 1.10
252.5 0.063 1.14 0.094 – 1.19
252.5 0.114 0.985 0.021 – 1.25
252.5 0.063 1.11 0.045 – 1.29
252.5 0.082 1.07 0.022 – 1.37
252.5 0.064 1.14 0.023 – 1.42
252.5 0.053 1.2 0.025 – 1.46
252.5 0.046 1.26 0.025 – 1.51
252.5 0.015 1.86 0.038 – 1.77
252.5 0.018 1.94 0.040 – 2.29
252.5 0.022 2.04 0.041 – 2.55
252.5 0.024 1.82 0.037 – 2.62
252.5 0.036 1.39 0.028 – 2.70
252.5 0.030 1.54 0.032 – 3.03
252.5 0.026 1.67 0.034 – 3.15
302 0.118 0.238 0.025 0.920 1.84
302 0.080 0.272 0.030 1.24 2.00
302 0.071 1.28 0.142 – 4.71
302 0.070 1.26 0.101 – 5.48
302 0.015 1.86 0.038 – 5.51
302 0.026 1.67 0.034 – 6.54
302 0.073 1.33 0.054 – 7.41
302 0.231 0.836 0.023 – 7.85
302 0.212 0.866 0.022 – 8.1
302 0.155 0.971 0.024 – 8.22
302 0.125 1.05 0.024 – 8.43
302 0.043 1.79 0.036 – 8.78
302 0.106 1.11 0.025 – 8.84
302 0.074 1.35 0.027 – 9.16
302 0.091 1.17 0.025 – 9.33
332.5 0.127 0.268 0.024 0.980 5.35
332.5 0.014 1.86 0.038 – 12.0
332.5 0.070 1.28 0.143 – 12.2
332.5 0.069 1.26 0.102 – 14.8
332.5 0.025 1.67 0.035 – 17.0
332.5 0.072 1.33 0.055 – 20.1
332.5 0.229 0.834 0.027 – 21.6
332.5 0.210 0.863 0.026 – 22.0
332.5 0.153 0.97 0.027 – 23.0
332.5 0.043 1.79 0.037 – 23.6
L.A. Alcázar, J. Ancheyta / Chemica

.5. Other approaches

In recent years, as computational power increases, other
pproaches in nonlinear parameter estimation have been devel-
ped. Simulated annealing (SA) is a global stochastic optimiza-
ion method originated in the computational reproduction of the
hermal process of annealing, where a material is heated and
ooled slowly in order to reach a minimum energy state. In
he SA method, starting from an initial configuration, a new
onfiguration is generated randomly. If this new configuration
as a smaller value of objective function (in a minimization
ontext), then this new configuration will become the current
onfiguration. Otherwise, a stochastic test is applied to indi-
ate whether or not the new configuration will be accepted.
his process of movement-acceptation is repeated, and as

he number of analyzed alternatives increases, the acceptance
robability of the worse configurations is gradually reduced.
ue to the possibility of carrying out “wrong way” move-
ents, the search can move from a local optimum toward the

lobal optimum to avoid being trapped in a poor local solution
20,21].

The Grid Search Technique is another approach which retains
he true nonlinearity of the model in the estimation of its param-
ters. In this method, a region for grid search is defined by
pecifying the lower the upper limits of the values of the kinetic
arameters. The number of grid points in each direction is spec-
fied and the sum of the squares of residual between predicted
nd experimental values (SSR) obtained by using the parame-
ers which characterize the grid point. This process is repeated
ntil SSR is obtained for each grid point. Then the error surface
a three-dimensional representation of the sum of the squares of
eviation) is drawn and is analyzed for its shape and the associ-
ted valley. The best set of parameters is then determined as the
oordinates of that grid point which produced the lowest SSR
22].

Finally, in order to search for the global optimum, hybrid
echniques have been proposed where a genetic algorithm (GA)
s used to identify initial guesses and then a local optimizer is
sed to determine the optimum. Genetic algorithms are popula-
ion based stochastic search procedures based on the survival of
he fittest principle. A population of randomly generated solu-
ions, i.e., parameter values for this problem, is progressively

odified using genetic operators such as crossover and muta-
ion in order to improve the population’s fitness as measured by
heir effectiveness in predicting the experimental data. Of this
ay, genetic algorithms provide a potential tool for finding ini-

ial estimates in large parameter spaces, which followed by a
raditional local optimization routine may be more efficient in
earching for a global optimum [23].

. Results and discussion

.1. Experimental data and reaction rate model from the

iterature

Experimental data reported by Kilanowski and Gates [14]
ere employed to illustrate the application of the proposed

3
3
3
3

ineering Journal 128 (2007) 85–93 89

ethodology for parameter estimation. These data correspond
o the hydrodesulfurization of benzothiophene conducted in a
teady-state differential flow microreactor containing particles
f sulfided CoMo/Al2O3 catalyst. The study was carried out
t reaction temperatures of 252.5, 302 and 332.5 ◦C, and par-
ial pressures in the following ranges: benzothiophene (BT),
.015–0.23 atm; H2, 0.20–2.0 atm; and H2S, 0.02–0.14 atm. Dif-
erential conversion data were obtained to determine reaction
32.5 0.123 1.05 0.027 – 24.6
32.5 0.073 1.35 0.029 – 25.6
32.5 0.090 1.17 0.027 – 26.1
32.5 0.104 1.11 0.027 – 26.5
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Kilanowski and Gates [14] also reported that the following
ougen–Watson kinetic models well represented the experimen-

al information of hydrodesulfurization of benzothiophene.
At 252.5 ◦C:

= kPBTPH2

(1 + KBTPBT + KH2SPH2S)2 (4)

t 302 ◦C and 332.5 ◦C:

= kPBTPH2

(1 + KBTPBT + KH2SPH2S)(1 + KH2PH2 )
(5)

.2. Initialization of parameters

Although in this case the authors have estimated and reported
inetic parameter values, they were not taken into account as first
ption as initial guess to give a better explanation of this step,
nd Monte Carlo method was employed instead.

First, an initial range of ki values needs to be defined. A
ommon range to be used for initial guess is 1–100. Fig. 2 shows
he variation of the objective function (SSE) when random ki

alues are employed. For illustration purposes only one hundred
terations with parameter k of the model given by Eq. (4) at
52.5 ◦C will be presented, but similar approach was followed
or KH2S and KBT. The lowest values of the SSE were found at

lso low k values, indicating that k is more likely to be in the
irection of unity (k → 1).

Then, a new range of k values is specified, for instance,
.01 < k < 10, and another hundred of random iterations is done.

ig. 2. Results of Monte Carlo simulation at 252.5 ◦C: (a) 1 < k < 100, (b)
.01 < k < 10 and (c) 0.00001 < k < 0.001.

F
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T
t
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t
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t
h

ig. 3. Results of Monte Carlo simulation at 252.5 ◦C: (a) 0.00001 < KBT <
.001, (b) 0.01 < KBT < 10 and (c) 10 < KBT < 100.

he results are shown in Fig. 2b. Again, the lowest values of
he SSE are found at low k values. This process is repeated and
ig. 2c presents the results for 0.00001 < k < 0.001. For this latter
ase very low values of SSE were found and hence, the order
f magnitude of k is about 1 × 10−5. The same procedure was
ollowed for the other two parameters and their orders of mag-
itude were: KH2S: 10; KBT: 10. Fig. 3 shows the results for
he case of KBT. For the other temperatures corresponding to
ifferent model with four kinetic parameters (Eq. (5)), different
rders of magnitude were found. These values can be used for
nitialization of parameters.

.3. Results of nonlinear estimation

Once the order of magnitude of the different parameters has
een established, they can be used as initial guess for the nonlin-
ar parameter optimization. For this purpose Marquardt method
11] was employed.

Fig. 4 shows the corresponding iterative process. It is seen that
he objective function really started at low values, which is obvi-
usly due to the correct initial guess of parameters determined by
onte Carlo method. The optimization process required about

60 iterations and parameter values seem to be the optimal.
The final results of calculated parameters are shown in
able 4, in which a comparison with those reported by
ilanowski and Gates [14] is presented. Most of the parame-

er values are equal or quite similar to the reported ones. The
ighest differences, although not really high, in both reported
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Fig. 4. Iterative process for minimization of the objective function at 252.5 ◦C.

Table 4
Comparison of reported [14] and calculated kinetic parameters

Temperature
(◦C)

Parameter Reported
values [14]

Calculated
values

Optimized
values

252.5
kn 3.40 × 10−5 3.3346 × 10−5 3.3346 × 10−5

KBT 3.95 × 101 3.9512 × 101 3.9512 × 101

KH2S 1.20 × 101 1.1914 × 101 1.13184 × 101

302.0

kn 2.36 × 10-4 2.0197 × 10−4

KH2 1.79 × 10-1 1.5684 × 10−1

KBT 2.03 × 102 1.7640 × 102

KH2S 1.57 × 102 1.3699 × 102

332.5

kn 2.83 × 10−4 2.8860 × 10−4

KH2 6.54 × 10−2 6.3078 × 10−2

K 8.71 × 101 8.8709 × 101

k

a
3

3

a
K
m
d
s
f
f

e

F
(

Fig. 6. Sensitivity analysis of calculated parameters for the model at 302 ◦C.
(�) k, (�) KBT, (x) KH2 , (�) KH2S.
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BT

KH2S 8.73 × 101 8.9922 × 101

n (gmol/gcat s atm2), KBT (atm−1), KH2S (atm−1), KH2 (atm−1).

nd calculated parameter values are observed at temperature of
02 ◦C.

.4. Sensitivity analysis

Analysis of parameter sensitivity was practiced for k, KH2S
nd KBT in the model at 252.5 ◦C (Eq. (4)), and for k, KH2S,
BT and KH2 in the model at 302 ◦C and 332.5 ◦C (Eq. (5)) by
eans of ±20% perturbations in the original parameter values

etermined by nonlinear regression and reported in the previous
ection. For each perturbation in each parameter, the objective

unction was evaluated and the results are presented in Figs. 5–7,
or the models at 252.5, 302, and 332.5 ◦C, respectively.

From Figs. 6 and 7 it is clearly seen that the estimated param-
ters are the optimum since at 0% perturbation the SSE is the

ig. 5. Sensitivity analysis of calculated parameters for the model at 252.5 ◦C.
�) k, (�) KBT, (�) KH2S.

t
t

a

F
m

ig. 7. Sensitivity analysis of calculated parameters for the model at 332.5 ◦C.
�) k, (�) KBT, (x) KH2 (�) KH2S .

inimum, which is the condition to assure the correct values
f parameters. Some parameters in these figures seem to give
ifferent minimum than the other parameters but the minimum
s indeed the same since they are plotted in the secondary Y-axis
ith different scale. On the contrary, in Fig. 5 it is evident that
nly k and KBT yield the same minimum at 0% perturbation
hile KH2S give another minimum at different perturbation.
From a graphic analysis of Fig. 5, the new value of KH2S

an be obtained. To find it by graphic visualization, one can
ry a kind of “zoom” in the perturbation percentage, say ±10%
nstead of ±20% just to expand the scale. The results with this
ew perturbation range are presented in Fig. 8. As can be seen
he minimum of the objective function is achieved at −5% per-
urbation of the original value of K . The optimized value of
H2S
his parameter is shown in the last column of Table 4.

With the optimized values of kinetic parameters sensitivity
nalysis is performed again and the results are shown in Fig. 9.

ig. 8. Sensitivity analysis of parameter KH2S with ±10% perturbation for the
odel at 252.5 ◦C.
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ig. 9. New Sensitivity analysis of optimized parameters for the model at
52.5 ◦C. (�) k, (�) KBT, (x) KH2 , (�) KH2S.

ow, the three parameters gave the same minimum at 0% per-
urbation, and hence, the global minimum is guaranteed and the
ptimization process is successfully finished.

It is then clear that by sensitivity analysis one can find those
arameters providing different minima than others at different
erturbation values, as was demonstrated in Figs. 5 and 8. In such
ases a graphic examination of the sensitivity analysis curve
ust be done and with the corresponding perturbation values

iving the different minima new values of those parameters can
e re-calculated.

Table 5 summarizes the values of the objective function given
y the sum of square errors determined with the reported kinetic
arameters [14], and with the calculated and optimized values
btained in this work. It is observed that in general in all cases the
arameter values determined in this work have given the lowest
SE. This confirms that the proposed methodology yields the
est set of parameters which guaranties the global minimum of
he objective function.

.5. Analysis of residuals

Fig. 10 shows the residual analysis applied in each of the het-
rogeneous kinetic models at 252.5, 302 and 332.5 ◦C. Fig. 10a
resents the results for the first set of calculated parameters, and
ig. 10b the results for the optimized values of parameters, in
hich only the corresponding values at 252.5 ◦C are shown. In
oth cases regular distribution of residuals without patterns is
bserved, indicating the adequacy of the estimated parameters.
owever, as was demonstrated before the set of parameters at
52.5 ◦C presented in Fig. 10b gives slightly lower residuals than

hat of Fig. 10a (average absolute residuals of 2.586 × 10−8 ver-
us 2.646 × 10−8, respectively). These results support the fact
hat residual analysis, although being a good method for check-

able 5
SE determined with reported, [14] calculated and optimized kinetic parameters

emperature
◦C)

Set of kinetic parameters

Reported valuesa Calculated values Optimized values

52.5 2.100 × 10−14 2.117 × 10−14 2.100 × 10−14

02 1.039 × 10−14 1.034 × 10−14 1.034 × 10−14

32.5 9.990 × 10−14 9.947 × 10−14 9.947 × 10−14

a The authors reported different values [14], but they were re-calculated in
his work.

fi

R

ig. 10. Residual analysis for the model at (♦) 252.5 ◦C, (�) 302 ◦C, (�)
32.5 ◦C. (a) For the first set of calculated parameters and (b) for optimized
alues of parameters.

ng the quality of the fit, cannot guarantee that the estimated
arameters give the global minimum of the objective function.

. Conclusions

A step-by-step methodology is proposed in this work for
etermining parameters in heterogeneous kinetic models. The
ain advantage of the proposed method is the achievement of

he optimal values of kinetic parameters by assuring the mini-
ization of the objective function to the global minimum and

ot to local minima.
Various approaches are considered in the methodology: ini-

ialization of parameters (analysis of orders of magnitude, Monte
arlo simulations), nonlinear parameter estimation, parameter

ensitivity analysis, residual analysis, which if applied properly
an guarantee the best set of parameters for a given model.

Parameter estimation with the case of study used in this work
howed that the proposed methodology indeed assures the opti-
ization of kinetic parameters values giving lower error than

eported ones.
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