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Abstract

The role of sensitivity analysis during kinetic parameter estimation is discussed in this work. An approach consisting in various steps: initialization
of parameter values, nonlinear parameter estimation, and parameter sensitivity analysis, is proposed to assure that kinetic parameters are properly
estimated and the convergence of the objective function to the global minimum is achieved. The method is illustrated with experimental data
reported in the literature for the hydrodesulfurization of benzothiophene. The values of kinetic parameters obtained with the proposed methodology
gave slightly lower values of the sum of square errors between experimental and predicted reaction rates compared with reported ones.

© 2006 Elsevier B.V. All rights reserved.
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1. Introduction

Most of the mathematical models used for representing any
type of phenomena (or situation) occurring not only during
chemical reactions but also in other areas, e.g., thermodynam-
ics, environmental sciences, molecular modeling, etc. involve
parameters that need to be estimated from experimental data.
The models can be supported on theoretical, semitheoreti-
cal/semiempirical or empirical bases, and their parameters can
have theoretical meaning or be simply correlation constants [1].
Linear regression is the most-widely used method for parame-
ter estimation due to its simplicity and easy manner to interpret
the results, i.e., by representing the data in 2-dimension plots
and examining how the experimental points deviate from the
straight line. The common way that researchers often express
the strength of the relationship between two variables is by the
correlation coefficient (r) or determination coefficient (correla-
tion coefficient squared, r2), concepts from statistics, which are
used to see how well trends in the predicted values follow trends
in experimental values, and range between O and 1. If there is no
relationship between the predicted values and the experimental
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ones r=0, > =0 or are very low. As the strength of the rela-
tionship between the predicted values and experimental values
increases, so does the correlation coefficient. A perfect fit gives
a coefficient of 1. Thus, the higher the correlation and determi-
nation coefficients the better the fit [2].

Sometimes, a model can be transformed into different lin-
ear equations, such as in the case of Michaellis—Menten (M-M)
model used in enzymatic kinetics, as can be seen in Table 1
[3-6]. It has been reported that the values of parameters of the
M-M model calculated with the linear equations given in Table 1
can be slightly different, and it is recommended and more accu-
rate to use that model which when representing the data in a
2-dimension plot gives better distribution of the experimental
points along the straight line [7]. This has been confirmed by
nonlinear regression analysis [8].

Another example of difficulties when using linear regres-
sion analysis to estimate kinetic parameters has been reported
recently. For studying kinetics of hydrocracking of heavy oils
in perfectly mixed continuously reaction system, some authors
transform the resulting reaction rate equations in various straight
lines as is presented in Table 2, and then they calculate sepa-
rately the values of each parameter, ko, k1 and ky [9]. By this
way, the condition kg =k + k> is not satisfied, while when deter-
mining these kinetic parameters simultaneously by nonlinear
regression this situation is not presented. The error between
experimental and calculated yields has been shown to be lower
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Table 1
Example of different linear equations obtained from a same model
Method Equation
Vinax[S
Michaellis-Menten Model [5,7] y = VmaxlS1
Km +[S]
1 Kn 1

Lineweaver and Burk [3] = m

v Vinax Vinax [S]

Eadie-Hofstee [4] é = ‘;r("‘”‘ - (%) v
m m

v

Augustinsson [5] V= Vmax — Km—
S K

Woolf [6] 151 =
v Vmax

Nonlinear regression [1]

Vinax C
2 max ,
SCE = Zl(v )| Z‘Kﬁce —

[S]

Vmax

Table 2
Example of parameter estimation with linear and nonlinear regression analyses

Kinetic model [9]

Linear regression analysis (ko, k1 and k; are determined independently)

Nonlinear regression analysis (ko, k; and k, are determined simultaneously)

k
Feed (A)—bLight oils (B)

Feed (A)gGases )

(ra) = —(k1 + k2)Ca = —koCa
(rp) =kiCa

(re) = k2Cy

(%e™) =4 (wsv)
A0 ) — ko [ ——
Ca WHSV
(CAO_CA> (CB_CBO) —k ( 1 )
Ca Ca '\ wHsv
[(CAO—CA)CC] —k ( 1 )
CaoCa ="\ wHsv
2
SSE = Z(cﬁd‘uc?”)

C; cale evdluated with the above equations

with parameter values determined with the latter approach
[10].

As can be observed from the examples described above lin-
ear regression analysis can sometimes present problems when
estimating parameters for a given model. That is why nonlin-
ear regression is a more common approach when modeling of
heterogeneous kinetic systems, in which the main objective is
to optimize the values of the model parameters that provide
the best fit to the experimental data. This nonlinear parame-
ter estimation is carried out by using the least squares method,
searching the best set of parameters that minimizes the sum of
squares errors (SSE) between measured and calculated values
[1,2].

When using nonlinear regression for parameter estimation,
the task turns into a nonlinear optimization problem, which can
be solved by optimization methods [11], such as Gauss—Newton,
Levenberg—Marquardt among others. Levenberg—Marquardt
method is of course the most popular alternative to the
Gauss—Newton method of finding the minimum of a function
that is a sum of squares of nonlinear functions. Some models,

such as those used for describing heterogeneous kinetics, can
have several parameters (sometimes hundreds) to be estimated,
and be highly nonlinear; in those cases when determining the
values of parameters, multiple solutions of the objective func-
tion during the optimization process (i.e. multiple minima) can
be obtained and the best set of parameters is not guaranteed. The
optimal solution depends mostly on the initial guess of param-
eters [12,13].

Most of the kinetics studies reported in the literature only give
parameter values and 7, 2, residuals (differences between exper-
imental and calculated values), absolute errors, or SSE, without
enough evidence to assure that parameter values correspond to
the global minima of the objective function, and consequently
the model accuracy is not clearly established. The sensitivity
analysis is a tool that allows for validating the values of param-
eters obtained by regression analysis. Sensitivity analysis is a
way to assure that the solution of the objective function with a
given set of parameters does correspond to the global minimum
and not to local minima in the parameter optimization process
[12]. It must be clarified that what is global is the minimum and
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not the sensitivity analysis, which is local. Although global con-
vergence (i.e. global minimum) cannot be totally proved by a
local sensitivity analysis, it is very helpful to obtain information
about the surface of the model nearby the determined minimum,
which most of the times coincide with global minima. Together
with sensitivity analysis, previous experience with the particular
case (e.g. knowledge about order of magnitude of the estimated
parameters) also helps in establishing the accuracy of the esti-
mated parameters.

Taking into consideration that sensitivity analysis in the fit-
ting of kinetic data is a very important and until recently com-
pletely neglected topic, this paper proposes an approach based
on sensitivity analysis to determine the best set of parameter
values during parameters optimization process. The procedure
is exemplified with parameter estimation of a heterogeneous
kinetic model and experimental data of hydrodesulfurization
of benzothiophene reported in the literature. This example was
chosen due to the abundant experimental data reported by the
authors, which by the way is not common to find in the open
literature [14].

2. Description of the method

A direct and universal approach that can be a guarantee of
the best solution during parameter estimation process is not easy
to develop. The main difficulties when estimating parameters in
heterogeneous kinetics are: the complexity of the model, which
can be from simple algebraic equations to complex differential
equation systems, linear or highly nonlinear in nature; the source
and precision of experimental data, which can come from the
literature (from one or more references) or from own or litera-
ture experiments specially designed to perform kinetic studies

in which all the care has been put to assure kinetic regime; the
robustness of the optimization algorithm, in most of the cases
Levenberg—Marquardt method is used since it has shown to be
superior over others [15]; the numerical method employed for
solving the model equations, for instance, orthogonal colloca-
tion has been reported to fail for dynamic simulation of plug
flow packed bed reactors and the method of characteristics has
been preferred [16].

Therefore, what is presented here is not such a magic method
but an approach that takes into consideration various steps, €.g.,
initialization of parameter values, nonlinear parameter estima-
tion, and parameter sensitivity analysis, to determine and vali-
date the set of parameters that minimizes the differences between
experimental and calculated experimental values. A schematic
representation of the proposed methodology is shown in Fig. 1.

2.1. Initialization of parameters

The optimal solution during nonlinear parameter estimation
depends mostly on the initial guess of parameters values [12].
The initialization of parameters is a problem frequently found
in nonlinear estimation that may converge to local minima and
not to the global minimum during the parameter optimization
process.

If the kinetic model and the corresponding parameters have
been reported previously by other authors, no matter the dif-
ferences in reaction conditions, catalyst, feed, reaction system,
etc., at least the order of magnitude of the reported parame-
ters values should be employed as initial guess. If there are
not reported values, an iterative analysis of orders of magni-
tude of the parameters should be performed. This approach can
sometimes be very tedious, since it implies the evaluation of the
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¢ Analysis of parameters order of
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Fig. 1. Proposed methodology for parameter estimation.
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objective function for different sets of parameters, starting say
with k; =1 (where k is the parameter to be estimated, and i=1,
N parameters). Then, the value of each parameter is changed
one at a time, say k; =10, keeping constant the values of the
others (k; =1, for i #j), and the objective function is evaluated
again. For any modification in the value of k; the change in the
objective function is examined and the influence of each param-
eter on the objective function (sensitivity of each parameter) is
determined.

This procedure is repeated for different values of k; <1 (0.1,
0.01, 0.001, etc.) and/or k;>1 (10, 100, 1000, etc.) as many
times as necessary. The lower the value of the objective function
indicates the correct order of magnitude of the parameter value.
This means that if one parameter is changed, for instance, from
1 to 10, and the value of the objective function increases, it is
more likely that this parameter value is <1.

This approach allows for determining the order of magnitude
of the parameter values and becomes easier the estimation of
initial values. Of course, itrequires patience and certain expertise
in its use.

Initial guess of parameter values can also be obtained
using Monte Carlo method [17], which consists mainly in
the following steps: (1) initial guess of parameters is deter-
mined using random numbers, (2) with this initial guess of
parameters the objective function (e.g. sum of square errors)
is calculated, and (3) this procedure is repeated M times
(M>1000) and the minimum of the M values of the sum of
squares of residuals is determined. The set of initial guess
of parameters that corresponds to this minimum can be used
as initial estimates in the nonlinear parameter optimization
process.

2.2. Nonlinear parameter estimation

The reliable solution of nonlinear parameter estimation is an
important computational problem when modeling of heteroge-
neous kinetic systems [15]. This nonlinear parameter estimation
is commonly carried out by using the least squares method in
order to find the global minimum of the following objective
function:

N data

SSE =Y (Yexp — Yeale)’ (1)
i=1

The method of Marquardt [11] (also called Levenberg—
Marquardt) uses the method of linear descent in early iterations
and then gradually switches to the Gauss—Newton approach.
Most of the scientific software (the so-called “solvers”) uses
the Marquardt method for performing nonlinear regression
analysis.

Most often nonlinear regression is done without weighting,
giving equal weight to all points (as in Eq. (1)), as is appropriate
when experimental scatter is expected to be the same in all parts
of the curve. If experimental scatter is expected to vary along the
curve, then the points can be weighted differentially. The most-
often used weighting method is called “weighting by 1/y*>” and
is expressed as follows [18]:

N data
SSE = Z T()’exp - ycalc)2 2
i=1 7 €XP

Sometimes, the data come with additional information about
which points are more reliable. For example, different data may
correspond to averages of different numbers of experimental
trials, in this case weighting of the data should be added in the
objective function to obtain better estimates

N data

SSE = ) wi(Yexp — Yeae)’ 3)
i=1

where w; is a weighting factor.
2.3. Sensitivity analysis

Sensitivity analysis is commonly employed to assess that in
the nonlinear parameter estimation, the set of parameters does
correspond to the global minimum and not to local minima [12].
Sensitivity analysis is applied to each of the estimated parame-
ters by means of perturbations of the parameter value (keeping
the other parameters in their estimated values). Perturbations
are preferably done in the range of £20%. For each perturba-
tion in the parameter values the objective function is reevaluated
and then for each parameter the perturbation percentage is plot-
ted against the corresponding value of the objective function.
If all perturbations in all the parameters give the minimum
of the objective function with their original values (0% per-
turbation), then the global minimum has been achieved. On
the contrary, if at least one parameter does not give the same
minimum than the others at 0% perturbation, that means poor
nonlinear parameter estimation. To correct this, the values of
the wrong estimated parameters are re-determined by examining
the sensitivity plot, and finally, parameter sensitivity is carried
out again on these parameters and now the global minimum is
guaranteed.

2.4. Residual analysis

Analysis of residual distribution, calculated as the difference
between experimental and predicted values, is frequently prac-
ticed by some authors as a way to demonstrate that the estimated
parameters for a given model accurately predict the experimental
values. Plots of the residuals are used to check the quality of the
fit. Graphical analysis of the residuals is the single most impor-
tant technique for determining the need for model parameters
refinement [19]. A plot of residual values against the number
of experimental observations is commonly used, and a regu-
lar distribution of residuals with no prediction bias should be
observed, thus proving the adequacy of the proposed model and
the calculated parameters. On the contrary, if there is a pattern,
the parameters are wrong estimated.

Residual analysis is certainly useful to see graphically the pre-
cision of estimations. However, it cannot guarantee by itself the
achievement of the global minimum of the objective function.
It is better to use both residual analysis and sensitivity analysis
to assure that parameters are properly estimated.



L.A. Alcdzar, J. Ancheyta / Chemical Engineering Journal 128 (2007) 85-93 89

2.5. Other approaches

In recent years, as computational power increases, other
approaches in nonlinear parameter estimation have been devel-
oped. Simulated annealing (SA) is a global stochastic optimiza-
tion method originated in the computational reproduction of the
thermal process of annealing, where a material is heated and
cooled slowly in order to reach a minimum energy state. In
the SA method, starting from an initial configuration, a new
configuration is generated randomly. If this new configuration
has a smaller value of objective function (in a minimization
context), then this new configuration will become the current
configuration. Otherwise, a stochastic test is applied to indi-
cate whether or not the new configuration will be accepted.
This process of movement-acceptation is repeated, and as
the number of analyzed alternatives increases, the acceptance
probability of the worse configurations is gradually reduced.
Due to the possibility of carrying out “wrong way” move-
ments, the search can move from a local optimum toward the
global optimum to avoid being trapped in a poor local solution
[20,21].

The Grid Search Technique is another approach which retains
the true nonlinearity of the model in the estimation of its param-
eters. In this method, a region for grid search is defined by
specifying the lower the upper limits of the values of the kinetic
parameters. The number of grid points in each direction is spec-
ified and the sum of the squares of residual between predicted
and experimental values (SSR) obtained by using the parame-
ters which characterize the grid point. This process is repeated
until SSR is obtained for each grid point. Then the error surface
(a three-dimensional representation of the sum of the squares of
deviation) is drawn and is analyzed for its shape and the associ-
ated valley. The best set of parameters is then determined as the
coordinates of that grid point which produced the lowest SSR
[22].

Finally, in order to search for the global optimum, hybrid
techniques have been proposed where a genetic algorithm (GA)
is used to identify initial guesses and then a local optimizer is
used to determine the optimum. Genetic algorithms are popula-
tion based stochastic search procedures based on the survival of
the fittest principle. A population of randomly generated solu-
tions, i.e., parameter values for this problem, is progressively
modified using genetic operators such as crossover and muta-
tion in order to improve the population’s fitness as measured by
their effectiveness in predicting the experimental data. Of this
way, genetic algorithms provide a potential tool for finding ini-
tial estimates in large parameter spaces, which followed by a
traditional local optimization routine may be more efficient in
searching for a global optimum [23].

3. Results and discussion

3.1. Experimental data and reaction rate model from the
literature

Experimental data reported by Kilanowski and Gates [14]
were employed to illustrate the application of the proposed

methodology for parameter estimation. These data correspond
to the hydrodesulfurization of benzothiophene conducted in a
steady-state differential flow microreactor containing particles
of sulfided CoMo/Al,O3 catalyst. The study was carried out
at reaction temperatures of 252.5, 302 and 332.5°C, and par-
tial pressures in the following ranges: benzothiophene (BT),
0.015-0.23 atm; H,, 0.20-2.0 atm; and H,S, 0.02-0.14 atm. Dif-
ferential conversion data were obtained to determine reaction
rates directly. Catalyst deactivation was negligible over hun-
dreds of hours of operation. A summary of experimental results
is shown in Table 3.

Table 3
Summary of results of benzothiophene HDS kinetics [14]
T(°C)  PpT (atm) Py, (atm)  Py,s (atm)  Pyge (atm) 7T (X 107
gmol/gey 8)
2525 0.105 0.215 0.022 0.819 0.272
252.5 0.068 0.234 0.026 1.04 0.309
2525 0.197 0.842 0.020 - 1.04
252.5 0.063 1.14 0.124 - 1.10
2525 0.063 1.14 0.094 - 1.19
252.5 0.114 0.985 0.021 - 1.25
2525 0.063 1.11 0.045 - 1.29
252.5 0.082 1.07 0.022 - 1.37
2525 0.064 1.14 0.023 - 1.42
252.5 0.053 1.2 0.025 - 1.46
2525 0.046 1.26 0.025 - 1.51
252.5 0.015 1.86 0.038 - 1.77
2525 0.018 1.94 0.040 - 2.29
252.5 0.022 2.04 0.041 - 2.55
2525 0.024 1.82 0.037 - 2.62
252.5 0.036 1.39 0.028 - 2.70
2525 0.030 1.54 0.032 - 3.03
252.5 0.026 1.67 0.034 - 3.15
302 0.118 0.238 0.025 0.920 1.84
302 0.080 0.272 0.030 1.24 2.00
302 0.071 1.28 0.142 - 471
302 0.070 1.26 0.101 - 5.48
302 0.015 1.86 0.038 - 5.51
302 0.026 1.67 0.034 - 6.54
302 0.073 1.33 0.054 - 7.41
302 0.231 0.836 0.023 - 7.85
302 0.212 0.866 0.022 - 8.1
302 0.155 0.971 0.024 - 8.22
302 0.125 1.05 0.024 - 8.43
302 0.043 1.79 0.036 - 8.78
302 0.106 1.11 0.025 - 8.84
302 0.074 1.35 0.027 - 9.16
302 0.091 1.17 0.025 - 9.33
33255 0.127 0.268 0.024 0.980 5.35
3325 0.014 1.86 0.038 - 12.0
33255 0.070 1.28 0.143 - 12.2
3325 0.069 1.26 0.102 - 14.8
3325 0.025 1.67 0.035 - 17.0
3325 0.072 1.33 0.055 - 20.1
33255 0.229 0.834 0.027 - 21.6
3325 0.210 0.863 0.026 - 22.0
3325 0.153 0.97 0.027 - 23.0
3325 0.043 1.79 0.037 - 23.6
3325 0.123 1.05 0.027 - 24.6
3325 0.073 1.35 0.029 - 25.6
33255 0.090 1.17 0.027 - 26.1
3325 0.104 1.11 0.027 - 26.5
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Kilanowski and Gates [14] also reported that the following
Hougen—Watson kinetic models well represented the experimen-
tal information of hydrodesulfurization of benzothiophene.

At 252.5°C:

kPgr Py,
r= 5 4
(1 + Kp1PRT + KH,8 PH,S)
At 302 °C and 332.5°C:
kPpt Py
- (5)

ryr =
(1 4+ KT PBT + KH,5 PH,5)(1 + KH, PH,)
3.2. Initialization of parameters

Although in this case the authors have estimated and reported
kinetic parameter values, they were not taken into account as first
option as initial guess to give a better explanation of this step,
and Monte Carlo method was employed instead.

First, an initial range of k; values needs to be defined. A
common range to be used for initial guess is 1-100. Fig. 2 shows
the variation of the objective function (SSE) when random k;
values are employed. For illustration purposes only one hundred
iterations with parameter k of the model given by Eq. (4) at
252.5°C will be presented, but similar approach was followed
for Ku,s and Kpt. The lowest values of the SSE were found at
also low k values, indicating that k is more likely to be in the
direction of unity (k — 1).

Then, a new range of k values is specified, for instance,
0.01 <k< 10, and another hundred of random iterations is done.
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Fig. 2. Results of Monte Carlo simulation at 252.5°C: (a) 1<k<100, (b)
0.01 <k< 10 and (c) 0.00001 <k<0.001.
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Fig. 3. Results of Monte Carlo simulation at 252.5°C: (a) 0.00001 < KpT <
0.001, (b) 0.01 <KpT <10 and (¢) 10 < KpT < 100.

The results are shown in Fig. 2b. Again, the lowest values of
the SSE are found at low & values. This process is repeated and
Fig. 2c presents the results for 0.00001 < k£ < 0.001. For this latter
case very low values of SSE were found and hence, the order
of magnitude of k is about 1 x 107>, The same procedure was
followed for the other two parameters and their orders of mag-
nitude were: Kn,s: 10; Kpr: 10. Fig. 3 shows the results for
the case of Kpt. For the other temperatures corresponding to
different model with four kinetic parameters (Eq. (5)), different
orders of magnitude were found. These values can be used for
initialization of parameters.

3.3. Results of nonlinear estimation

Once the order of magnitude of the different parameters has
been established, they can be used as initial guess for the nonlin-
ear parameter optimization. For this purpose Marquardt method
[11] was employed.

Fig. 4 shows the corresponding iterative process. It is seen that
the objective function really started at low values, which is obvi-
ously due to the correct initial guess of parameters determined by
Monte Carlo method. The optimization process required about
160 iterations and parameter values seem to be the optimal.

The final results of calculated parameters are shown in
Table 4, in which a comparison with those reported by
Kilanowski and Gates [14] is presented. Most of the parame-
ter values are equal or quite similar to the reported ones. The
highest differences, although not really high, in both reported
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Fig. 4. Iterative process for minimization of the objective function at 252.5°C.

Table 4
Comparison of reported [14] and calculated kinetic parameters
Temperature ~ Parameter Reported Calculated Optimized
[§©)] values [14] values values
K" 340 x 1075 33346 x 1075 3.3346 x 107>
252.5 KgT 3.95 x 10! 3.9512 x 10! 3.9512 x 10!
K, 1.20 x 10! 1.1914 x 10! 1.13184 x 10!
K" 236 x10%  2.0197 x 107
302.0 Ku, 179 x 107 1.5684 x 107!
: Kpr 2.03 x 107 17640 x 102
Ku,s 157 x 102 1.3699 x 102
K" 2.83x107*  2.8860 x 10~*
Ky, 6.54%x 1072 6.3078 x 1072
3325 > i 1
KpT 8.71 x 10 8.8709 x 10
Ku,s 8.73 x 10! 8.9922 x 10!

k" (gmol/gcar satm?), Kgr (atm™1), Ku,s (atm™1), Ky, (atm™h).

and calculated parameter values are observed at temperature of
302°C.

3.4. Sensitivity analysis

Analysis of parameter sensitivity was practiced for k, Ky,s
and Kpr in the model at 252.5°C (Eq. (4)), and for k, Kyj,s,
Kpr and Ky, in the model at 302 °C and 332.5 °C (Eq. (5)) by
means of +£20% perturbations in the original parameter values
determined by nonlinear regression and reported in the previous
section. For each perturbation in each parameter, the objective
function was evaluated and the results are presented in Figs. 5-7,
for the models at 252.5, 302, and 332.5 °C, respectively.

From Figs. 6 and 7 it is clearly seen that the estimated param-
eters are the optimum since at 0% perturbation the SSE is the
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(#) k, (A) Kt, (O) Knys.
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Fig. 6. Sensitivity analysis of calculated parameters for the model at 302 °C.
(#) k, (&) Kpr, (¥) Kn,, (O) Kn,s.
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Fig. 7. Sensitivity analysis of calculated parameters for the model at 332.5°C.
() k, (A) Kpr, (x) K, (O) Kpys.

minimum, which is the condition to assure the correct values
of parameters. Some parameters in these figures seem to give
different minimum than the other parameters but the minimum
is indeed the same since they are plotted in the secondary Y-axis
with different scale. On the contrary, in Fig. 5 it is evident that
only k and Kpt yield the same minimum at 0% perturbation
while Ky,s give another minimum at different perturbation.

From a graphic analysis of Fig. 5, the new value of Kpy,s
can be obtained. To find it by graphic visualization, one can
try a kind of “zoom” in the perturbation percentage, say £10%
instead of £20% just to expand the scale. The results with this
new perturbation range are presented in Fig. 8. As can be seen
the minimum of the objective function is achieved at —5% per-
turbation of the original value of Ky,s. The optimized value of
this parameter is shown in the last column of Table 4.

With the optimized values of kinetic parameters sensitivity
analysis is performed again and the results are shown in Fig. 9.
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2.20E-14
@ 2 18E-14
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212-11-10-9 -8 -7 6 -5 -4 -3-2-1 01234356 7809101112
% Perturbation

SE

Fig. 8. Sensitivity analysis of parameter Ky,s with £10% perturbation for the
model at 252.5°C.
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Fig. 9. New Sensitivity analysis of optimized parameters for the model at
252.5°C. (#) k, (&) Kpr, (x) Kn,, (O) Kp,s.

Now, the three parameters gave the same minimum at 0% per-
turbation, and hence, the global minimum is guaranteed and the
optimization process is successfully finished.

It is then clear that by sensitivity analysis one can find those
parameters providing different minima than others at different
perturbation values, as was demonstrated in Figs. 5 and 8. In such
cases a graphic examination of the sensitivity analysis curve
must be done and with the corresponding perturbation values
giving the different minima new values of those parameters can
be re-calculated.

Table 5 summarizes the values of the objective function given
by the sum of square errors determined with the reported kinetic
parameters [14], and with the calculated and optimized values
obtained in this work. It is observed thatin general in all cases the
parameter values determined in this work have given the lowest
SSE. This confirms that the proposed methodology yields the
best set of parameters which guaranties the global minimum of
the objective function.

3.5. Analysis of residuals

Fig. 10 shows the residual analysis applied in each of the het-
erogeneous kinetic models at 252.5, 302 and 332.5 °C. Fig. 10a
presents the results for the first set of calculated parameters, and
Fig. 10D the results for the optimized values of parameters, in
which only the corresponding values at 252.5 °C are shown. In
both cases regular distribution of residuals without patterns is
observed, indicating the adequacy of the estimated parameters.
However, as was demonstrated before the set of parameters at
252.5 °C presented in Fig. 10b gives slightly lower residuals than
that of Fig. 10a (average absolute residuals of 2.586 x 1073 ver-
sus 2.646 x 1078, respectively). These results support the fact
that residual analysis, although being a good method for check-

Table 5
SSE determined with reported, [ 14] calculated and optimized kinetic parameters

Temperature Set of kinetic parameters

°C

€O Reported values®  Calculated values ~ Optimized values
252.5 2.100 x 10714 2117 x 10714 2.100 x 10714
302 1.039 x 1074 1.034 x 10714 1.034 x 10~ 14
332.5 9.990 x 1014 9.947 x 10~ 14 9.947 x 10714

2 The authors reported different values [14], but they were re-calculated in
this work.
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Fig. 10. Residual analysis for the model at (¢) 252.5°C, (H) 302°C, (A)
332.5°C. (a) For the first set of calculated parameters and (b) for optimized
values of parameters.

ing the quality of the fit, cannot guarantee that the estimated
parameters give the global minimum of the objective function.

4. Conclusions

A step-by-step methodology is proposed in this work for
determining parameters in heterogeneous kinetic models. The
main advantage of the proposed method is the achievement of
the optimal values of kinetic parameters by assuring the mini-
mization of the objective function to the global minimum and
not to local minima.

Various approaches are considered in the methodology: ini-
tialization of parameters (analysis of orders of magnitude, Monte
Carlo simulations), nonlinear parameter estimation, parameter
sensitivity analysis, residual analysis, which if applied properly
can guarantee the best set of parameters for a given model.

Parameter estimation with the case of study used in this work
showed that the proposed methodology indeed assures the opti-
mization of kinetic parameters values giving lower error than
reported ones.
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